
\
The Construction of a TCP/IP to Apple Event Gateway for

use in Distributed Computing Experimentation
Christopher Haupt, Rochester Institute of Technology

Abstract

Apple event aware applications open the possibility of sharing unique, application specific
resources with other Apple event speaking programs. Because Apple events are a System 7
specific feature, it is not possible to use these resources from non-Macintosh platforms
without major alterations of the Apple event aware applications. This paper provides a
summary of a project to allow non-Mac platforms access to Apple event applications via a
protocol that facilitates the transfer of pseudo-Apple events over TCP/IP. The TCP/IP to Apple
event protocol is discussed, as is an application that implements gateway functionality on the
Macintosh platform. To facilitate the use of the gateway, a client API is introduced. This paper
documents the first implementation of the protocol and proposes some future enhancements.
Two current experiments making use of the gateway are described illustrating possible uses
of the protocol.

1. Introduction
Why a TCP/IP to Apple Event Gateway?

The group of high-level events collectively known as
Apple events define a standard body of event signals
that can be used in a wide variety of inter– and intra–
application communication situations (IAC). Defined
within the Apple Event Registry, hundreds of
Apple events are described in this lengthy developer
tome. Activities such as controlling the Finder,
requesting graphics operations, or accessing tables of
data are but a small sampling of the breadth of event
types.

A limiting factor to wide spread use of Apple events is
that they are an exclusive feature of the System 7
Macintosh operating system. As such, they can not be
directly used to communicate with Macs running older
OS software, nor can they generally be used with
other vendors’ operating systems. Additionally, if two
System 7 Macs are not connected via an intervening
AppleTalk network–or bridged in some manner–it is
not possible to communicate via Apple events.

It is with these issues in mind that the TCP/IP to Apple

Event Gateway project was conceived. The TCP/IP to
Apple Event (TCPAE) Gateway package defines a
simple protocol by which machines running the
TCP/IP network protocol stack may issue pseudo-
Apple event signals to gateway machines.

The TCPAE package includes a client application
programming interface (API) for TCP machines and a
gateway server1 application for Macintosh host
machines. It is the gateway application’s responsibility
to convert pseudo-Apple events into the real thing and
dispatch them to their appropriate destinations.

Structure of this Paper

This paper provides an overview of the TCPAE
protocol project. This paper is not a tutorial on the use
of Apple events or TCP/IP. For that, I would refer you
to the bibliography as a good starting place, especially
[2][4][5][8][9][14][17]. I wouldn’t presume to be
prepared to give a tutorial as this work is of an
experimental nature at the time of this writing.

1A note on the words gateway and server. In this paper, the two terms are used interchangeably to mean the TCPAE
gateway application that resides on the Macintosh. If they are used otherwise and the meaning isn't clear by context, I will
attempt to make it clear explicitly.

The Construction of a TCP/IP to Apple Event Gateway 1

\
Part 2 describes the details of the TCPAE protocol. A
short discussion regarding the significance of Apple
events is followed with some details centering around
the choice of TCP/IP as the primary networking
protocol for the gateway. Lastly, part two describes
the actual TCPAE protocol, including the layout of the
data packets necessary to communicate with the
gateway.

Part 3 provides an overview of the construction of the
gateway. A brief functional specification is provided
and the implementation decisions that were required
to bring the specification to reality are mentioned. The
section closes with a description of second version
enhancements that are planned for the gateway
project.

Part 4 defines the client API package. The version one
API is implemented as an object code library enabling
quick linkage with custom programs without having to
worry about writing special networking code. The
current API functions are documented in this section
and some of the proposed enhancements are also
described.

Part 5 provides a glimpse at two of the current
experiments to exercise the gateway which are in
progress at RIT.

The paper provides some concluding remarks in part
6.

2. The TCPAE Protocol

Why use Apple Events?

With the creation of System 7, Apple Computer has
defined an accessible high level event protocol with a
stable2 dictionary of common, sharable events [2].
Dubbed the Apple Event Interprocess
Messaging Protocol or Apple events for short,
the protocol defines the mechanism by which
applications can share data and trigger events within
themselves, other programs on the same machine, or
on Macs across an AppleTalk connected network.

While System 7 and Apple events portended to a
world of software that easily takes advantage of
services provided by others, until recently this dream
hasn't been the case. Only within the last half year or
so have developers begun to release truly Apple event
savvy programs.

With these releases, the power of interapplication
communication has begun to become apparent. Apple
events enable software features which allow for the
easy use of the specialities of various packages from
outside of their native environments. Scripting from
such applications as Hypercard and Frontier is
opening the door in the Macintosh world to simple,
automated, and remote task management in a
generalized way.

Hindering some of these possibilities are two major
barriers: 1) Apple events are a Macintosh System 7
specific feature, and as such are confined to that
environment; 2) Apple events take advantage of
AppleTalk protocols as their underlying transport.
Without special software or hardware connections for
AppleTalk networks, it isn't possible for Macs to send
events across other wide area networks. Worse, it is
difficult–or near impossible–to effectively
communicate and/or send Apple events between
applications residing on hardware and operating
system platforms other than Macintosh.

Why TCP?

The TCP/IP Internet Protocol Suite (TCP/IP)
provides a nearly universal set of network service
protocols. TCP/IP has been implemented on
practically all major computing platforms. As such, it
provides a rich set of options for writing client
applications that can communicate with Macintosh
Apple event-aware resources.

The Transmission Control Protocol (TCP) provides
guaranteed, ordered peer to peer delivery of data. As
such, it is extremely useful for setting up virtual
circuits between two applications when reliability is
the most desirable attribute of the network
connection.

The TCPAE protocol

2By stable, I mean mostly stable. Apple event suites have been known to change slightly, some (a la Finder) will probably
change in the future, and others are not in official existence yet.

The Construction of a TCP/IP to Apple Event Gateway 2

\
The TCPAE protocol defines the preferred message
format used to communicate between the TCPAE
gateway application and its clients. The current
version of the protocol is heavily influenced by
TcpPlay [16] as are the TCP portions of the client and
gateway code.

This section describes the general format of TCPAE
packets and illustrates common message formats for
the primary gateway functions implemented in version
one of the protocol. A client API which hides
implementation detail is provided to communicate
with the gateway. However, there may be situations
where a programmer wishes to implement his or her
own TCP client3 code. See the later sections of this
paper for a discussion detailing the general
implementation.

TCPAE packets are constructed in the same way
regardless of their source and destination. Each
packet is preceded with an identifying header and is
followed by message specific data if applicable.

031
IPAE Signature
Message Type
Message Length

Field 0

Field n

•
•
•

Figure 2.1 TCPAE Packet Preamble

Figure 2.1 is a diagram of the preamble layout. The
packet header begins with a longword signature of the
protocol. Four bytes encode IPAE into the Mac
OSType format. This signature has two purposes.
First, it acts as a simple identification tag to help the
gateway filter out extraneous packets that may be
sent to its connection socket from other applications.
Second, it serves as a synchronization mechanism to
mark the beginning of each transaction between client
and server.

Immediately following the signature is a longword
value which encodes the packet content type. The

packet type is primarily used to instruct the gateway
or client on how to decode the attached data stream.
The type can also be thought of as the command that
is being sent to the remote host for interpretation.

The last field of the header is a longword value that
supplies the length in bytes of the following data
stream. This value should be zero if the command type
does not require supplemental data4. The TCPAE
protocol does not impose any special structure upon
attached data and does not require any special
terminating sequence at the end of the data buffer
being sent. It only requires an accurate buffer count.

Version one of the protocol implements three packet
command types: status, reply, and Apple event.

• The status command, denoted by the
constant kStatusCmd in the API, can be sent from
client to server or server to client. Its purpose is to
request common information and statistics from the
query target. Currently, the standard reply to the
status command includes the implemented version of
the TCPAE protocol, the security options in effect, and
the number of transactions handled since image
activation. The Figure 2.2 illustrates a status packet.

031
Field 0

Field n

•
•
•

'IPAE'
kStatusCmd

0L

Figure 2.2 Status Command Packet

• The reply type is denoted with the symbol
kReplyCmd. This packet is used to communicate the
results of a previous command back to the originator
of that command. Figure 2.3 shows the packet format.

3 The primary reason that comes to mind is in the situation where you may want to use the gateway from a client platform on
which the API isn't currently implemented. I would urge you to let me know if you actually do implement a different version
as I can act as a clearing house for this kind of work.
4For the curious, if you specify a number other than zero and send data to the gateway when not necessary, the gateway will
pull the data off the socket but then discard it.

The Construction of a TCP/IP to Apple Event Gateway 3

\

Field 0

 Field n

031

•
•
•

'IPAE'
kReplyCmd

Reply Data Len
Reply Type
Reply Buffer

Figure 2.3 Reply Command Packet

The data buffer attached to the packet header can
have a variable length dependent upon the type of
reply. The first long word after the header fields is the
reply type. Usually this field will contain the command
type that this packet is responding to. Following the
reply type is a variable number of bytes that contain
the actual reply. The length of this buffer is obtained
by taking the header message length field and
subtracting four (for the longword sub-type field). An
example of a reply packet answering back from a
status command is shown in figure 2.4.

Field 0

Field n

•
•
•

031
'IPAE'

kReplyCmd

kStatusCmd
protocol vers
security flags

num transacts

16L

Figure 2.4 A Reply to a Status Command

• The final packet type is used for Apple
event command packets. Denoted symbolically by
kAECmd, this is the packet that is at the heart of the
gateway system. It represents the Apple event that is
to be dispatched on the gateway Macintosh. The
version implementing protocol one can have a variable
data buffer size, but the buffer is always constructed
with the same first four initial fields after the standard
header. First is a longword holding an AEKeyword for

the class of the Apple event. Second is also a
longword cast AEKeyword holding the Apple event
identifier. Third is a field containing a longword with
the method by which the target for the Apple event is
specified. Fourth is the address of the Apple event
target and is of variable length. Additional fields are
possible and are dependent upon the Apple event
class and event id. See figure 2.5 for an illustration of
this packet type.

031
Field 0

Field n

•
•
•

'IPAE'
kAECmd

AE Class
AE ID

Address Method

Target Address
Event Data

16L* + Data Len

Figure 2.5 A Generic Version 1 AE Command
Packet

Version one of TCPAE is limited to sending Apple
events to programs by their application signature.
This method is symbolically denoted with kByAppSig
within field three of the packet buffer and with an
OSType encoded signature (a longword) in field four.
Other addressing techniques are planned for future
protocol releases. Figure 2.5 places an asterisk next
to the 16L constant in the attached message length
field to reinforce that in this version of the protocol
the buffer will be minimally 16 bytes in length. (Four
each for the event class, identifier, addressing type
constant, and the OSType application signature–more
if event data follows.)

Currently, TCPAE optimizes the use of three Apple
events: Open Application5, Quit Application, and Do
Script. While the TCPAE protocol is sufficient to
describe any event, only these three events can be

5The protocol fakes an OAPP by sending to the Finder an Open Selection event with the target application as the selected
item. After launching the app, the Finder sends an OAPP to the target.

The Construction of a TCP/IP to Apple Event Gateway 4

\
automatically dispatched by the gateway. This
limitation will be lifted with the addition of the
kAEBuildCmd planned for the next gateway release
(see below).

3. The TCPAE Gateway

The Version 1.0 Gateway

The TCPAE gateway application constructed to
implement version one of the TCPAE protocol has
been created to meet a certain minimal functionality
level. This section describes the specification for the
gateway and describes how its various functions are
generally implemented.

The TCPAE gateway is built to act as a conduit
between network clients running the TCP/IP protocol
stack and a Macintosh running System 7 with
MacTCP. Clients can send requests via the TCP
protocol which are subsequently converted into
corresponding Apple events by the gateway. Version
one of the gateway application specifically interprets
Open Application, Quit Application, and Do Script
events.

Version one is a single threaded server thereby
effectively limiting the number of simultaneous
connections to one at a time. Most transactions
between client and server are not time consuming, so
throughput concerns have been ignored for this
version.

The gateway application is small and requires little
resources (usually less than 100K of RAM). The
application is a suitable candidate for launching from
within the Startup Items folder. It has a simple
interface which is useful for monitoring current
transactions and for creating, modifying, and deleting
security parameters (see figure 3.1 below).

129.21.200.1

ttxt
aevt
oapp

Figure 3.1 The Monitor Window

General Gateway Structure

The gateway can be represented by a simple finite
state machine. Figure 3.2 illustrates the network
activity loop of the application. When not initializing
or shutting down, the TCPAE gateway is generally in
one of four main states. First, it opens a passive listen
TCP socket and awaits a client connection. Second,
upon receiving a connection request, it verifies that
the sender is indeed an authorized client and then
buffers the client's command request. Third, once a
command is completely received, it is sent to an
interpreter for execution. It is within the
interpretation step that the command is parsed and an
Apple event is built and posted (assuming an Apple
event command). The last general state is a reply
state in which any command results are transmitted
back to the client.

InitHalt

Recv
(TCP)

Interp
(AE)

Reply
(TCP)

Listen
(TCP)

Figure 3.2 The States of the Gateway

The Construction of a TCP/IP to Apple Event Gateway 5

\
The TCP state machine as outlined above is
implemented using the MacTCP driver library of
routines [5]. The diagram indicates in which of the
four states TCP driver and Apple Event Manager calls
are used. After TCP initialization, a
TCPPassiveOpen call is made by the gateway on a
stream previously setup by a TCPCreate call in the
initialization step. The passive open listens on the
TCPAE port (port number 1200 is temporarily being
used as the listening socket). An asynchronous
notification routine (ASR) registered with the TCP
driver is called when activity is detected on the
socket. An active open call from a client, errors,
timeouts, or TCP urgent requests may trigger the
ASR. The ASR implemented in this project maintains a
set of counters and global flags to help signal state
changes during normal Macintosh event loop
processing. When a connection is detected, the
gateway will transfer from a listening state to a
receiving state.6

The receiving state has several steps. First, the TCPAE
packet preamble will be read in and examined to
ascertain that this is indeed: 1) a valid packet, 2) a
valid command type, and 3) in sync. The third step is
necessary in the cases where a garbled transmission
may occur (which TCP tends to prevent) or more
likely, to guard against problems of Endian
mechanics.7 It is the client's responsibility to transmit
its data in the proper ordering for the Macintosh to
understand. Packets that are out of order will often
have their headers jumbled. The gateway simply
ignores these packets. As TCP/IP defines a network
standard byte order using the Big Endian style [8], a
developer must primarily be concerned with his or her
own data as encapsulated by TCP and not the network
level packetization problem.

After the receiving state accepts a packet header, it
finishes reading in the attached data buffer if one
exists and is still outstanding. The gateway next
makes an initial security check to verify that the client
host is allowed to make connections. If this check
fails, the connection is severed.

On successful completion of reading the entire packet,
the command and its associated data are passed on to
the interpretation state. The interpreter disassembles
the command and its data.

• A status command triggers the immediate
construction of a reply buffer with a dump of current
global values storing the protocol version, security
flags, and activity counter. The data is passed to the
reply TCP code and the state is changed, strangely
enough, to the reply state.

• An incoming reply command type is
currently not used by the gateway application and is
quietly discarded. The state immediately changes
back to the passive listen state.

• The Apple event command directs the
interpreter to assess the class and event id of the
request. The interpreter first determines if this is an
event for which it has a constructor, and if so, it
examines the active security to see if this is an event it
is allowed to send–checking event class, id, and target
address.

In this version of the gateway, the Open Application,
Quit Application, and Do Script events have built in
constructors. Constructors are functions which are
optimized to build AppleEvent data structures from
supplied client data.

Listing 3.1 below provides a sample constructor
framework for the Do Script event. In this simple
example, the Do Script constructor sets the
kAENoReply flag on the outgoing Apple event. This
flag tells the target application to not bother returning
a Reply Apple event. Reply Apple events are used by
an event receiver to return minimal result codes and
messages from the Apple event handling mechanism.
The constructor in listing 3.1 will only return the
numeric status codes for the AESend Apple Event
Manager call within the gate and not the results of the
target application–this is an example of a “send and
forget” constructor; a method in which the success of
the event’s execution is not tracked.

6Throughout this discussion, it is implicitly understood that errors and TCP urgent data requests are special events and they
will put the state machine in an exception mode.
7Sounds impressive, but is a hardware problem. Some architectures read their most significant bytes from low to high
memory addresses–so called Big Endian–and others from high to low–the Little Endians. Macs using the Motorola 68K family
of processors are Big Endians.

The Construction of a TCP/IP to Apple Event Gateway 6

\
The Do Script constructor built in to the TCPAE
gateway is slightly more complex than the example
detailed in the listing. In the current version of the
gateway, Reply Apple event messages are requested
and their contents, if any, are returned to the client.
The current implementation does not examine
additional, supplementary Apple events that the target
application may want to return to a sender. See the
gateway futures discussion below for more on that
matter.

The constructor for Do Script and Quit Application are
nearly identical. The constructor for Open Application
has to be created differently as this event is normally
sent by the Finder when it launches an application.
The recommended mechanism for a program to
launch another application under System 7 is to send
the Finder an Open Selection event with the
application to be launched as the selected object [2]
[4]. Version one of the gateway does indeed use this
method–the address resolution code maps the
application signature to the proper Alias and File
System Specification records through judicious use of
PBCatSearch and other Desktop Database tricks.
However, some concern has been raised for the case
where Finder is not running8. This has yet to be

investigated.

Constructors include the mechanism by which the
Apple event target address is resolved. Currently,
addressing is limited to the use of application
signatures. An unfortunate side-effect of this design
choice is that Apple events can not be posted to
applications across an AppleTalk network–the target
must be resident on the same machine as the gateway.

If the target is found and legal, and all necessary
parameters for the desired event are at hand, the
Apple event is created and dispatched.

Reply Apple events or status codes returned by
AESend (or errors returned by other Apple Event
Manager routines) are encapsulated in a reply packet
and are passed on to the client via the gateway reply
state code.

The reply state transmits the reply packet that may
have accumulated data during previous gateway
states. It is possible for the reply packet to be empty,
in which case is simply acts as an acknowledgement
marker for the client.

8Like how does the Finder launch the app when the Finder isn’t there to receive the Open Selection to begin with. The
temporary answer being implemented in an interim gateway is to use the Process Manager and LaunchApplication
during that special case.

The Construction of a TCP/IP to Apple Event Gateway 7

\

OSErr SendDOSC(OSType signature, long length, char * aScript)
{

OSErr sendStat;
AEAddressDesc theAETarget;
AppleEvent theAE, replyAE;
long theIntlLen;
Ptr theIntlBuf;

// note that TCPAEStatus is a simple error handler that has been used here to
// hide the clutter of the typical checks composed of lots of if-thens,switches,
// etc...
//
// address the ae

TCPAEStatus(AECreateDesc(typeApplSignature, (Ptr) &signature,
sizeof(OSType), &theAETarget));

// create the ae
TCPAEStatus(AECreateAppleEvent(kAEMiscStandards, kAEDoScript,

&theAETarget, kAutoGenerateReturnID,
kAnyTransactionID, &theAE));

//embed the data
// PARAM 1
// build international string

TCPAEStatus(BuildIntlBuffer(length, aScript, &theIntlLen, theIntlBuf));

// the direct param is a buffer of type IntlText
TCPAEStatus(AEPutParamPtr(&theAE, keyDirectObject, typeChar,

theIntlBuf, theIntlLen));

// send the ae
sendStat = AESend(&theAE, &replyAE, kAENoReply + kAENeverInteract,

kAENormalPriority, kAEDefaultTimeout,nil,nil);

// clean up the descriptor chain we created
TCPAEStatus(AEDisposeDesc(&theAETarget));
TCPAEStatus(AEDisposeDesc(&theAE));

// allow a connectionInvalid during phase 1 of the app
return((sendStat == connectionInvalid) ? noErr : sendStat);

} /*SendDOSC*/
Listing 3.1 Simple Do Script Constructor and Dispatcher

Security

The issue of server machine security has been
addressed in a simple and straightforward manner for
the first version of the gateway.

Remote host access control and filter sets provide two
passive mechanisms to limit the source of incoming
client connects and the kind and target of remote
commands.

When access control is enabled, all incoming network
requests are put into a pause state until explicitly
permitted to continue by a user located at the
gateway machine. This version of access control is not
selective, see gateway futures below regarding that
feature.

Filters and filter sets provide a higher granularity of
control on the kinds of activity permitted on the
gateway machine. Filters are specific instances of an
entity which are not allowed to be used when

The Construction of a TCP/IP to Apple Event Gateway 8

\
creating an Apple event9. Filters can be specified for
certain Apple event classes/suites, for event ids, or for
event target applications (specific app signatures, in
this version).

Filtered items can be manually entered or chosen
from a predefined list. Figure 3.3 is a diagram of a
filter choice dialog for Apple event suites/classes. It
shows two Suites which will be not accepted by the
gateway: the standard Miscellaneous Suite and a
custom suite with the type GAME. The custom suite
RNDR is in the process of being added.

RNDR

GAME

Figure 3.3 The Suite Filter Editor in Use

Filter choices can be saved in filter sets. A filter set is
simply a predefined set of filters. Filter set documents
can be placed in the System 7 Startup Items folder to
enable the initial execution of the gateway with a set
of filters immediately in place.

Gateway Futures

TCPAE has been designed to allow simple expansion
without significant reworking of the protocol. The
gateway application documented in this paper is the
result of a first stab to implement the early
communication protocol. It is a proof of concept if you
will.

Several enhancements have been proposed and work
to implement them will continue to occur in the

foreseeable future. This sub-section outlines some of
the proposals in no particular order of priority.

Support for Enhanced API

One of the first improvements will be to support the
proposed enhancements for the client API. See section
4 below for a description of these changes.

Jens Peter Alfke’s AEBuild

The current implementation is obviously limited by the
small number of built-in event constructors. The
original plan for a next version was to include
additional built-ins, possibly implementing the rest of
the Required and Core suites. Further work after that
would go the route of drop in code resources so
developers could then implement their own suites as
desired.

In the progress of researching Apple events, the utility
function AEBuild [1] was discovered. This compact
routine takes as its parameters a textual
representation of an Apple event and parses them into
the descriptor records necessary for that particular
event. The end result is an AppleEvent record
structure ready for posting.

By including this function in the gateway, a
considerable amount of work will not be reinvented.
By adding a kAEBuildCmd to the TCPAE protocol,
the client can then send the textual representation of
any event and it will be constructed on the fly at the
gate.

Paranoia Security Mode

The current access control scheme has been intended
to serve during testing and within a small network
environment. In an environment such as RIT, where
you have the challenge of both an inquisitive student
population plus live links to the Internet, it is likely
that gateways left unattended would soon become
subjects of some level of unauthorized access.

It is desirable to leave the gateways up and running
on unattended Macs (see section 5 below).

9In the first version of the gateway it has been desirable to keep security rather simple. In the case of filters, the choice to
filter out events (as opposed to specifying what is allowed) was made primarily because there are few events that we want to
normally prevent. Future versions of the gateway may have the option of working with filters in either mode.

The Construction of a TCP/IP to Apple Event Gateway 9

\
The first improvement to access control will be the
ability to specify trusted nodes–computers from
which unlimited access is allowed. A follow on feature
would be the ability to specify actual username and
password combinations, possibly tying in the Users
and Groups function of System 7 or by using the
upcoming features of OCE.

Filters could be tied to the above scheme in a way
such that specific remote nodes or users would be
subject to certain filter sets.

Scripting Wires

As Apple event aware programs continue to emerge,
scripting environments will become more and more
useful for controlling day to day activity.

Hypercard, Frontier, application specific scripting
languages, and the future AppleScript environment
will certainly be among the regular collection of many
users’ tools.

To this end, the gateway itself needs to be enhanced
such that its own functions are available to scripting
languages. The first experiment into this realm will
probably entail the addition of Frontier “wires” to the
gateway.

Active Process Logging

The gateway monitor only displays the current
transaction. It would be advantageous to have the
ability to log all activity that passes through the
server. Such data could include messaging statistics,
client addresses, types of events and their targets, etc.

Multi-Threaded Server

As mentioned in the first part of this section, the
gateway is single threaded. As MacTCP can support
multiple concurrent channels between the Mac and
different clients, it would be useful to be able to
support many incoming and outgoing event request
simultaneously. This would be especially important on
those machines that maintain some popular service or
data source.

Better Reply Messaging

The current gateway only returns rudimentary
acknowledgements and Reply Apple event messages.
Perhaps in conjunction with the ability of working in
the reverse direction outlined below, a more
sophisticated return messaging protocol needs to be

put into place.

The Other Direction

Version one of the gateway is really a monodirectional
gateway. The packets that get sent back to clients are
limited to status messages, acknowledgements, and
some data.

The first enhancement will be to allow for unlimited
transference of data back to the client. This is
obviously necessary to support events whose purpose
is to provide the client with results of a nontrivial
nature.

The second natural enhancement would be to allow
gateways to communicate with each other across a
TCP link. By adding some kind of remote
communication Apple event to the Mac’s vocabulary, it
would be possible for applications to transparently
communicate with each other across TCP/IP networks.

A further out possibility would be to provide a
gateway like application on non-Macintosh platforms
to which Mac gateways can send events. The remote
gateway would construct platform specific commands
and then execute them. In this way, the user gets a
kind of remote shell capability on the other machine.

4. TCPAE Gateway Client API

The Version 1.0 API

In this section, the client API that implements version
one of the TCPAE protocol will be described. The API
is designed to shield the object library user from the
details of the protocol and any communication issues
between the client hardware and the gateway
Macintosh.

The API is currently implemented for the DEC Ultrix
and Sun OS operating systems.

All of the functions below return an integer value as a
function result. An error result represents the values
returned by the Apple Event Manager, PPC Toolbox,
and other Mac OS managers. A noErr is returned on
success.

The Construction of a TCP/IP to Apple Event Gateway 10

\
TCPAEOpenGate(int *context,

char *gateAddr)
TCPAEOpenGate causes the API to establish a link
between the client application and a gateway
described by the TCP/IP address supplied in the
gateAddr variable. The routine returns an unique id
for the new session in the context variable. The
context id is used in subsequent calls to specify a
particular gateway. It is conceivable for a client to
have multiple live links open concurrently.

TCPAECloseGate(int context)
TCPAECloseGate performs a clean shutdown of the
link specified by the context variable.

TCPAEGateStatus(int context,
StatusRec *buf)

TCPAEGateStatus queries the gateway specified by
context for statistics and various state information.
Version one returns a StatusRec buffer shown
below.

typedef struct _StatusRec {
short protoVers; // vers of protocol
short filterFlags;// event filtering

// active? which?
long transCnt; // number of packets

// served via gateway
} StatusRec;

TCPAESendOAPP(int cntx,
char *target)

TCPAESendOAPP requests the gateway specified by
cntx to trigger the Finder into sending an Open
Application event–in other words, it will cause the
launching of the application specified by target. In
this version, target is the application’s signature,
specified by a four character sequence of
alphanumerics. The API handles the proper
translation of this string format to the longword
utilized by the Mac.

As described in the previous section, this call
implements the event by a sending the Finder an
Open Selection event with the selected object being

the target, if found. If more than one application with
the same signature resides on the gateway system,
the application found first in the desktop database of
the target Mac will be selected.

TCPAESendQUIT(int cntx,
char *target)

TCPAESendQUIT is the converse of the
TCPAESendOAPP; it sends a Quit Application Apple
event to an application currently running on the
gateway system with the signature designated by
target10.
TCPAESendDOSC(int cntx,

char *target,
char *script)

TCPAESendDOSC constructs a simple version of the
Do Script Miscellaneous Suite event. The event is
posted to the application running with the signature
specified by target on the link given by cntx. The
script variable is a null terminated string
containing a sequence of commands (a script) native
to the target application. This script is stuffed into an
International Text buffer when it arrives at the
gateway as outlined for Do Script [2]. Results of the
script execution, if any, are buffered by the gateway
for transmission back to the client only if they come
back via the default Reply Apple event. This
shortcoming is in the process of being “repaired.”

API Futures

As with the gateway application, the client API has a
number of near term enhancements and additions
planned. These are described in no particular order.
All of these improvements require a corresponding
change or addition within the gateway application.

TCPAESendDOSC(int cntx,
char *target,
int scriptType,
char *scriptBuf)

10If more than one application is running with the same signature, then the gateway behaves in a nondeterministic manner,
depending instead on the behavior of the Apple Event Manager, AppleTalk, and the Process Manager for selecting a target.
This problem is true for all events handled with the current addressing scheme.

The Construction of a TCP/IP to Apple Event Gateway 11

\
The enhanced Do Script call would add the ability to
specify the kind of Do Script event to be built,
choosing either one that embeds a script within an
International Text buffer or one that specifies a script
file local to the gateway machine by the use of an
Alias record. In the case of an Alias record, the
scriptBuf variable would contain the path and
filename of the desired script.

TCPAESendBuild(int cntx,
char *target,
char *buf)

TCPAESendBuild would use Alfke’s AEBuild [1]
library routine on the description supplied in buf to
create an on-the-fly event to be addressed by
application signature (or whatever addressing method
is supported).

TCPAEGetTargets(int cntx,
int targCount,
BrowseRec*targBuf)

TCPAEGetTargets would implement a simple, non-
interactive process browser. It would return
targCount number of records defined by
BrowseRec within targBuf.

typedef struct _BrowseRec {
short nameLen; // len of progName
char *progName;// program name
long signature;// program sig
long type; // prog type
} BrowseRec;

These triplets of program information (minimally
triplets, they could be larger order tuples) would
contain program name, signature, and type for the
active processes running on the gateway machine.
Future information could possibly include process
serial numbers, network information, etc. In general,
TCPAEGetTargets could be used as a kind of PPC
Browser for remote clients searching for Apple event
targets.

5. TCPAE Gateway in Use
Working with Remote Macs

The TCPAE Gateway opens the possibility of remotely
controlling Macintosh computers across very wide
area networks. With an ever growing number of
applications that understand and make good use of

Apple events, it is possible to take advantage of these

The Construction of a TCP/IP to Apple Event Gateway 12

\
programs in a faceless11 manner.

As a hypothetical example, suppose that a word
processing program that has decent spelling and
grammar checking capabilities could be remotely
instructed to start up, read in some text, spell check
the document, and produce an annotated version of all
errors discovered. These results could then be
transmitted back to the client for further use, perhaps
even integrating the change listing in with another,
different word processor.

Such an example supposes an application that is Apple
event aware to a high degree. We don’t have to wait
for applications to be released with this level of
sophistication, however. By using current scripting
and macro language utilities–such as Frontier,
Hypercard, or even QuickKeys–it is possible to write
specialized linking scripts that the TCPAE Gateway
can call upon to facilitate communication.

For instance, at RIT we have regular disk-server
backup jobs that run on a nightly basis. These jobs do
not back up local Macintosh hard disks, instead
relying on the user to copy or store important files to
the server via a network copy operation (via FTP,
DECNet copy, or other mechanisms). By creating a
Macintosh script in Frontier which automates the
copying process, it is possible to trigger that script
remotely by the nightly backup job through the
gateway. Because temporary storage space on the
disk-server platform fluctuates, timed jobs within
Frontier may fail due to insufficient disk space.
Instead of having many Macs constantly attempting
and then failing copy operatings over and over again,
the server’s backup job can request Macs to transmit
data when it has an appropriate amount of storage
free.

Although the above problem can be solved in a
number of different ways, it illustrates just one of the
interactive/non-interactive tasks that you can
accomplish using the gateway and other off-the-shelf
applications. The Open Application, Quit Application,
and Do Script events offer a sufficient amount of
flexibility for initial experimentation.

11By faceless, I mean that you don’t have to be in front of the primary console of the machine, but rather you can use the
major functionality of the program without having to use a graphical user interface.

The Construction of a TCP/IP to Apple Event Gateway 13

\
Distributed Computing Experimentation

Of even more interest is using the TCPAE Gateway to
facilitate the use of custom task modules. A current
research project is under way at RIT to build an
inexpensive, distributed rendering and animation
system.

As is often the case in large computing environments,
many workstation and personal computer class
machines are networked together and can
communicate through an universal protocol.
Commonly these farms of workstations often see little
activity during certain portions of the day. Like many
other academic environments, RIT’s network is unified
by TCP/IP and is relatively quiet in the early morning
hours.

The focus of this particular research project is to use
idle workstations together to create a large, unified
graphics environment, possibly modeled on a Linda
tuple-space-like paradigm [7].

Initially, each machine contains small, faceless
applications that are very specific to single tasks.
Some may be optimized for graphical transformations
while others for different rendering operations such
as ray tracing. A master application on a single
workstation creates discrete chunks of work of a
particular task type and then releases them into the
environment. After the computation engines finish
with their tasks, they send the results back to the
master system and wait for more work. The master
system assembles the results into images or parts of
an animation. The goal of this work is to build a
system in which a simple, yet realistically rendered
animation can be constructed in short order and
displayed in near real-time with new frames that are
supplied constantly by the distributed environment.

With the large interest in and quantity of Macintoshes
at RIT, it is a logical choice as one of the platforms for
the graphics environment–especially with the large
number of machines that are idle in public computer
labs at night. Our current efforts include building
some of these rendering engines such that they are
Apple event aware. In this way, we can send work
requests to the engines via the TCPAE gateway while
using high-end graphics workstations for the master
display units. By using Apple events, we can also
make use of the graphics capabilities of the renderers
from within Macintosh specific applications. The
beauty of using this method is that the API hides all of
the complexity of writing TCP code at both the Mac
and client ends.

Two near term goals are to complete some non-trivial
renderings of biological objects partially modeled with
L-systems [15] and to examine ways of implementing
transformation specific engines using some of the
matrix concepts proposed in [10][12] and [13]. These
projects may very well be the subject of yet another
paper.

6. Conclusions
The TCPAE gateway can provide a simple, yet
powerful mechanism by which computers running the
TCP/IP protocols can make use of Apple event aware
applications on Macs that are connected to a common
network. This scheme is seen to be especially
powerful when non-Macintoshes can take advantage
of Macs that provide specific services via Apple events
that are normally only available to other Macs.

This paper has provided an overview of the TCPAE
Gateway project that I have been working on at RIT. It
has described the basic elements of the TCPAE
protocol. It has shown how protocol packets are
constructed and what they are used for. The paper
next examined the gateway application
implementation–describing its current functionality
and some of the proposed enhancements under
review. The client API was documented next. This API
provides a set of communication tools which
effectively hide the mechanics of TCP connections.
Lastly, a couple of the current experiments that are
using the TCPAE gateway at RIT were discussed.

I feel that the TCPAE gateway is an enabling
technology. It provides a conduit through which two
other applications communicate where that would not
normally be possible without specific code changes. I
hope that others may find uses for the gateway and
client software and look forward to hearing about
these activities.

Bibliography

[1] Jens Peter Alfke. Apple Events: The AE
Builder/Printer. Apple Computer, Inc., Cupertino,
California. 1991.

The Construction of a TCP/IP to Apple Event Gateway 14

\
[2] Apple Computer, Inc.. Apple Event Registry.
Apple Computer, Inc., Cupertino, California. 1992.

[3] Apple Computer, Inc.. Macintosh Apple Event
Object Support Library. Apple Computer, Inc.,
Cupertino California. 1991. (Developer Note–DTS)

[4] Apple Computer, Inc. Inside Macintosh,
Volumes I - VI. Addison-Wesley Publishing Company,
Inc., Reading Massachusetts.1985-1991.

[5] Apple Computer, Inc.. MacTCP Programmer’s
Guide. Apple Computer, Inc., Cupertino, California.
1991.

[6] Claris Corporation. Hypercard New Features
Guide. Claris Corporation, Santa Clara, California.
1991.

[7] C-Linda Reference Manual. Scientific
Computing Associates, Inc., New Haven, CT. 1990.

[8] Douglas Comer. Internetworking with TCP/IP:
Principles, Protocols, and Architecture
(Volume 1). Prentice Hall, Englewood Cliffs, NJ.
1991.

[9] Douglas Comer & David Stevens.
Internetworking with TCP/IP: Design,
Implementation, and Internals (Volume 2).
Prentice Hall, Englewood Cliffs, NJ. 1991.

[10] Thomas Cormen, Charles Leiserson, & Ronald
Rivest. Introduction to Algorithms. McGraw Hill
Book Company, New York. 1990.

[11] Donn Denman, Laura Hamersley, et. al..
Macintosh Apple Event User Terminology
Resources. Apple Computer, Inc., Cupertino
California. 1991. (Developer Note–DTS)

[12] Andrew Glassner, Ed.. Graphics Gems.
Academic Press, Inc., San Diego, California. 1990.

[13] F. Thomas Leighton. Introduction to Parallel
Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann Publishers, San
Mateo, California. 1992.

[14] Gary Little & Tim Swihart. Programming for
System 7. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts.1991.

[15] Przemyslaw Prusinkiewicz & Aristid
Lindenmayer. The Algorithmic Beauty of Plants.
Springer-Verlag, New York.1990.

[16] Bill Stafford, Malcolm Slaney, & Richard Tsoi.
TcpPlay. Advanced Technology Group, Apple
Computer Inc., Cupertino California. 1990. (Source
code)

[17] Andrew Tannenbaum. Computer Networks.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
1981.

The Construction of a TCP/IP to Apple Event Gateway 15

